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Abstract. Reaction of the commercially available 23.5~tri-G-benzyl-D-arabiise with a 
nrimarv amine fRNI%) affords the arabinofuranosvlamlne 2. which on treatment with a 
&ign& reagent ster&selectively gives the am&alcohol 3; 3 is an useful precursor of 
axasugars: it is converted into the pyrrolldine 4. by treatment with Tf@-Py, whereas-by 
ox$;lrr wrth PCC rt affords the lactam 5 whrch can be reduced to the correspondmg 

The “axasugars”, molecules structurally related to sugars in which the ring oxygen is replaced by the 
nitrogen of an amino group, have attracted considerable interest due to their ability to inhibit glycosidases.l In 
fact gIycosidase inhibitors have shown remarkable therapeutic potentialities in the treatment of metabolic 
diseases such as diabetes mellitu~,*~~ in the inhibition of tumoral metastasis,3 and as antiviral agents, in 
particular against the human immunodeficiency virus @IIV).4 Recent studies have shown that some 
axasugars, such as castanospermine and deoxynojirimycin, inhibit the interaction between the viral envelope 
glycoprotein fgp120) and the cell protein receptor (CD4). which is required to initiate an infective cyclep 
Two glucosidases (I and II) and two mannosidases (IA and IIt) are involved in the biosynthesis of gp120.5 It 
has been shown that the glucosidases are in general inhibited by axasugars which are structurally similar to 
glucose, while the best inhibitors of mannosidases are structurally quite different from mannose, this is the 
case of some pyrrolidine derivatives. 6 It has also been observed that the anti-HIV activity of these 
glycosidase inhibitors is improved by the presence of a lipophilic substituent, such as a butyl group linked to 
the nitrogen of the axasugars.’ In otber cases* an alkyl substituent is linked to the carbon of the axasugar 
adjacent to the nitrogen, the “anomeric” carbon, so that an “axa-C-glycoside” is formed. 

We now describe a new versatile procedure for the synthesis of axasugars, which allows the 
construction of molecules with different substituents at the nitrogen atom and at the adjacent position, starting 
from commercially available sugars. The procedure, shown in scheme I, involves the reaction of a protected 
aldose, 2,3,5-tri-O-benzyl-P~~mose (11, with a primary amine (RNI-Id to afford the corresponding 
glycosylamine 2, which is then reacted with a Grignard reagent (R’MgX).9 The so obtained amlnoalcohol3 
can be cyclixed by treatment with trifluoromethanesulphonic anhydrlde, to afford the cyclic amine 4, or it can 
be converted into the lactam 5 by treatment with PCC. The lactam !I can be easily converted into the 
corresponding amine. In both cases, an axasugar is formed in which R and R’ derive respectively from the 
primary amine and the Grignand reagent, so that different products can be obtained just by changing the 
structure of these two reagents. 
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The synthetic strategy involves the formation of a new stemocenter in the Grignard reaction (THP, 20 
“C). We observed a good stereoselection in the cases tested: N-benzyl-2.3,~~tri-O-benzyl-D- 
-arabinofuranosylamine (2, R = -CH*Ph) afforded the gluco-isomer 3 (R = -CI-I~Ph, R’= -CH=Cl$) in 71 % 

yield and 88% d.e.;9 N-hexyl-2,3,5-tri-O-benzyl-D-arabinofuranosykmine (2, R = -C,$I13) affonied an 
isomerically pure productlo 3 (R = -CeI-It3, R’= -CsH17) (92% yield fmm 1). The stereochemical outcome of 
the reaction is in agmement with a Cram chelation control model (figure I), which results in the formation of 
the fhreo product, as in general observed by us11 and others12 in the reaction of aldoses and their imines with 
organometallic reagents. l3 

The aminoalcohols 3, treated with Tf20 in pyridine afforded the pyrmlidine 4 (73% yield in the case of 
R = -CH#h, R’= -CH=CH2; 71% in tbe case of R = -C,Hts, R’= -CsHt7). the catalytic hydrogenation @‘d/C, 
EtOH-2N HCl) of which quantitatively afforded the azasugars 7t4 and 8.14 



4557 

Treatment of 3 with 4 equivalents of PCC (CI-I&ls, 4 A m.s.) afforded the lactam 5 (85% yield in the 
case of R = -CI$Ph, R’= -CH=CH~; 94% yield in the case of R = -C&It3, -CsHn). This unusual oxidative 
degradation allows the access to a new series of axasugam starting from the same precursor. The reaction 
requires 4 equivalents of PCC, according to the known mechanism of oxidative degradation of ketose@ 
which, however, occurs in very basic conditions. 
The lactam 5 was reduced to the corresponding amines 6 with BH3.Me.$ in THF at reflux, followed by 
treatment of the borate with TMEDA16 (60% yield in the case or R = -CaHt3, R’= -CsHt5, 76% yield for R = 

H, R’= -qHs). The deprotection of 6 (Hz, Pd/C, EtOH-2N HCl) afforded quantitatively the axasugars 9” and 
10.14 Also the lactam 5 (R = -C&Its, R’ = -CsHt7) was deprotected by catalytic hydrogenation (WC!. 
EtOH) to afford quantitatively the lactam 11.14 

(7)R=H,R’=GHs (9) R = H, R’= qHs (11) R = qH,s, R’= CsHt, 

(8) R = C&3. R’= CsH17 (10) R = C6Ht3. R’= CsHt7 

In conclusion, the described procedure allows the synthesis of axasugars in a versatile and easy manner. 

Starting from the same aldose, but employing dint amines and Grignard reagents, it is possible to 
synthesize axasugars which differ in the substituent at the nitrogen and at the adjacent position. Furthermore, 
the observed oxidative demolition of 3, with the formation of the lactam 5. enhances the potentialities of the 
method. Work is in progress to extend the procedure to different substrates, and to evaluate the biological 
properties of the products. 
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